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The influence of different boundary conditions applied in the contact line region on the 
outer meniscus shape is analysed by means of a finite-element numerical simulation of 
the steady movement of a liquid-gas meniscus in a capillary tube. The free-surface 
steady shape is obtained by solving the unsteady creeping-flow approximation of the 
Navier-Stokes equations starting from some initial shape. Comparisons of the outer 
solutions obtained using two different inner models, together with that published by 
Lowndes (1980), indicate the relative insensitivity of the outer solution to the type of 
model utilized in the contact line region. 

1. Introduction 
The dynamics of the three-phase contact region, in which a liquid-fluid interface 

joins a solid surface, determines the wetting/de-wetting of the solid in response to 
applied constraints. From a macroscopic point of view, the hydrodynamics of such 
processes is determined by the relation between the wetting speed and the (apparent) 
dynamic contact angle, Qd. While for smooth homogeneous solids the static contact 
angle, Qs, depends only on the materials involved (extremely small systems excepted), 
Qd is dependent both on the wetting speed and (more weakly) on the system 
scale/geometry (Kafka & Dussan V. 1979). 

The first attempts to understand why Qd differs from Qs were based on an analysis 
of the (creeping) flow generated by displacement of the contact line, which gives rise 
to pressure variations tending to deform the meniscus in a microscopic region close to 
the line, thereby increasing the apparent contact angle in the advancing fluid. This 
prediction has recently been confirmed experimentally, the meniscus curvature 
increasing continually as the contact line is approached, up to the limit of observation 
of less than m from the solid (van der Zanden & Chesters 1994a). 

While the confirmation that Qd is an apparent rather than true contact angle is 
reassuring, two obstacles to a complete model for Qd - Qs remain. The first is that the 
above hydrodynamic effect may be imposed on a genuine wetting-speed dependence of 
the true contact angle, Qo (the limiting meniscus inclination at distances from the solid 
of the order of a molecular dimension). The second is that if the classical 
approximations of fluid mechanics are retained, the predicted magnitude of Qd - Qo is 
infinite for all wetting speeds - in clear contrast with observation. The origin of this 
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problem lies in a stress singularity at the contact line which disappears only if one or 
more of these classical approximations is supposed to fail. 

Various possibilities have been suggested : breakdown of the no-slip approximation 
at the solid (Huh & Mason 1977; Lowndes 1980; and others), breakdown of the 
representation of inter-molecular forces solely by an interfacial tension (de Gennes, 
Hua & Levinson 1990; Kalliadasis & Chang 1994) and breakdown of the continuum 
description itself (Boender, Chesters & van der Zanden 1991). Each of these hypotheses 
leads to an inner length scale, I, which, together with the true contact angle, determines 
the meniscus shape in the outer region, where the classical approximations apply. The 
values of 1 obtained from comparing the resulting models with experimental data 
suggest that 1 is typically of the order of a molecular dimension ( I  - lo-’ m: Lowndes; 
Boender et al.; van der Zanden & Chesters 1994a). 

A full resolution of the mechanics of the inner, non-classical region, including any 
difference between @a and Q S ,  can probably be provided only by molecular-dynamics 
simulations. As such approaches are at present in their infancy, being able to cope only 
with very small systems and simple interaction potentials (Koplik, Banavar & 
Willemsen 1989), a practically important question is how essential a detailed 
understanding of the inner region is to the description of the outer region (in particular, 
the value of @J. Specifically, given a meniscus inclination @A at some distance h from 
the wall, how does the solution at distances greater than h depend on the inner model 
adopted? 

The present paper addresses this question by deriving finite-element solutions for the 
meniscus shape associated with a steadily advancing viscous liquid in a capillary tube 
for two different inner boundary conditions: a slip condition as used by Shopov & 
Bazhlekov (1991) and the continuum-breakdown model of Boender et al. The 
comparisons also include the finite-element results of Lowndes, who used a slightly 
different slip condition. 

It is intuitively clear, as proposed by Kafka & Dussan V. (1979), that for given @A 

the dependence of the outer solution on the inner model will be weak for h-values 
satisfying 

1 < h + a ,  (1) 

where a denotes the tube radius. The main interest here concerns how small h can 
become before the influence of the inner model becomes significant. Specifically, should 
the lower h-limit prove to be of the order of the inner length scale, 1, which itself is of 
the order of a molecular dimension, then @A can be equated with the true contact angle, 
Q0, reducing the modelling task to a description of the velocity dependence of Go. 

Section 2 develops the equations to be solved, including the boundary conditions 
associated with the three inner models. The finite-element method is outlined in $3 and 
the results presented in $4. The final section examines their implications - in particular, 
in regard to the original question of how essential a complete understanding of the 
inner dynamics is to a description of the outer region. 

2. Mathematical formulation of the problem 
2.1. The outer region : continuum equations and boundary conditions 

Consider the movement of a liquid displacing gas with a constant velocity U in a 
smooth capillary tube of radius, a, small enough for the influence of gravity on the flow 
to be neglected. If the inflow at some distance from the meniscus is axisymmetric with 
respect the tube centreline the problem can be considered as a two-dimensional 
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FIGURE 1. Schematic of the steady motion of a meniscus in a capillary tube: (a) for inner 
boundary conditions B1 and B2; (b )  for inner boundary condition B3. 

axisymmetric one. The cylindrical coordinate system (x,, xJ moving with the contact 
line (see figure 1) is chosen as a reference frame. It is also assumed that the liquid is 
incompressible and Newtonian and that inertial forces are negligible, i.e. Reynolds 
number Re = paU/p < 1, where p is the density and p is the dynamic viscosity of the 
liquid. Choosing p, a,  and the wall velocity, U, as reference quantities the creeping-flow 
approximation of the Navier-Stokes equation governing the liquid motion in the outer 
region can be written in dimensionless form as 

v . n =  0, (2) 

(3) 

where 17 is the stress tensor with components 

17.. a? = -pa.. v + (u.  a , ?  . + u. ? , a  .) 

p is the dimensionless pressure in the liquid and u = (ul, u,) is the velocity. 
The continuity equation is 

The boundary conditions to the above system of differential equations are as 

(a) Balance of the stress and the capillary pressure on the free surface r defined by 

v - u  = 0. (4) 

follows : 

the equation x, = h(x l ) :  

-n .n-p ,n  = n(R;l+R;l)/Ca, ( 5 )  

where n is a normal to r, p s  is pressure in the gas phase, which is assumed to be 
constant, R, and R, are the principal radii of curvature of r (Ri is reckoned positive 
if its centre of curvature lies on the liquid side). 

(b) Vanishing normal component of the velocity on the free surface r: 
u - n  = 0 on x, = h(x,). (6) 

(c) At the tube centreline x1 = 0: 
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vanishing normal velocity: 

vanishing tangential stress : 
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u, = 0 ;  

n,, = 0. 

(4 Analytical (Huh & Mason 1977), numerical (Lowndes 1980) and experimental 
(Hoffman 1975) results suggest that the computational flow domain need only extend 
a distance of one tube diameter from the meniscus position. So two alternative 
upstream boundary conditions at dimensionless distance 2.5 from the contact line 
(x, = - 2.5) were used : 
(i) vanishing radial velocity component and axial component of the axial velocity 
gradient : 

(ii) Poiseuille flow : 
u, = 0 ,  u,,, = O  at x, =-2 .5 ;  (9 4 

u, = 0, u,(x,) = -2x:+ 1 at x, = -2.5, (9 b) 

defined by the equations 

~ ~ ( 1 )  = - 1 ; uZ, ,(O) = 0, X, u,(x,) dx, = 0. 1: 
The meniscus profiles obtained using upstream boundary conditions (9a)  or (9 b) are 

identical. This suggests that the solution is independent of the form chosen as well as 
of any additional extension of the computational domain (to more than 2.5 radii). 

(e) At the tube wall x1 = 1, the impermeability condition: 

u1 = 0. (10) 

2.2. Boundary conditions imposed by the inner region 
Three types of inner boundary condition are explored : 

wall and adjacent liquid up to a distance I ,  from the contact line L, given by 
B1: Solution of the flow over the entire liquid domain 0, supposing slip between 

up = xz/l, {-I1 d x, d o;x ,  = l}, (1 1 a) 

u , = - l  {x ,d- l , ;x ,=  1}, (1 1 b) 

corresponding to linear variation of the slip velocity up to a distance I ,  from the contact 
line L (see figure l a ) .  

B2 : Solution over the entire domain 0, supposing slip at the solid surface described 
by a linear relation between shear stress and slip velocity (Navier slip condition): 

n,, = - 2/12(1+ u,(x,)) on x1 = 1. (12) 

B3: Solution over the domain below the segment A B  of length l3 (see figure lb), 
applying the no-slip condition at the wall and taking as condition on the boundary A B  
Moffatt’s (1964) analytical solution for the flow in the plane wedge ALB. 

The condition B2 is that utilized by Lowndes, who obtained good correspondence 
with macroscopic observations of the meniscus form (apparent contact angle) taking 
the angle QQ in figure 1 (a) equal to c#jS and I, of the order of lo-’ m. The slip resulting 
from this boundary condition is significant over a distance of order I,, being maximal 
at the contact line and becoming negligible when -x, 9 I,. 

A qualitatively similar variation of the slip velocity is imposed by the condition B1, 



Influence of contact line region on macroscopic meniscus shape 141 

which is that utilized by Shopov & Bazhlekov, the slip velocity varying linearly from 
its maximum value at the contact line to zero at -x, = lI (corresponding with the mid- 
point on the base of the first finite element). In this case, a non-physical discontinuity 
is introduced in the velocity gradient at the point -x, = I,, which however presents no 
computational difficulties. 

The condition B3 corresponds to that used by Boender et al., who derived an 
approximate equation for the meniscus inclination, G(xl), based on Moffatt's plane- 
wedge solution which respects the no-slip condition (Moffatt 1964). The transition 
from the continuum domain in which this equation is applicable to the last few 
molecular layers in which the final inclination, Go, is attained, was approximated as 
occurring abruptly at a distance from the solid, I,, of the order of a molecular 
dimension. In addition to the boundary conditions of no slip and of specified meniscus 
inclination, GQ (figure 1b) at distance 1, from the solid, it is necessary for the finite- 
element solution to specify conditions on the boundary segment AB. The choice made 
here - of conditions on AB corresponding to Moffatt's solution in the plane wedge 
ALB - is the simplest option compatible with the other boundary conditions. 

To determine the meniscus shape in the cases Bl-B3 the inclination GQ has to be 
specified at some point Q : 

where n, is the unit normal to the wall n, = (- 1,O) and n is the unit normal to the 
free surface. Q is chosen as the point L for cases B1 and B2 and as the point A for case 
B3 respectively (see figure la, b). Thus the problem described above depends on 
Ca - capillary number, ll or 1, - dimensionless slip lengths in cases B1 and B2 
respectively and length I ,  of the segment AB in case B3 and the 'contact angle' GQ.  

n . n w I Q  = C0S(GQ), (13) 

3. Numerical formulation 
The mathematical problem described in the previous section is solved by means of 

a finite-element method developed to cope with both steady and unsteady wetting 
problems. The principles and advantages of the application of finite-element methods 
to capillary motion problems have been well described by Lowndes (1980) (see also 
references therein). The finite-element method used in the present paper is of the 
divergence-free type in velocity-pressure variables. The elements are isoparametric 
quadrilaterals with 9-node biquadratic approximations {q9} for velocity and bilinear 
ones {v} for pressure on a standard ( 6 , ~ )  square domain. As the method is described 
in detail in Shopov, Minev & Bazhlekov (1990) and Shopov & Bazhlekov (1991), only 
a brief description of the numerical scheme is presented in the present section, 
emphasizing the determination of the steady meniscus position and the prescription of 
the meniscus inclination GQ (condition (13)). 

The solution for velocity and pressure is determined by requiring that the Galerkin 
weighted residuals of momentum and continuity vanish : 

/Q17-V@dQ-/aQn-17q5'ds = 0, 

/QV-u$idQ = 0, 

where the velocity u and pressure p are presented by 
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The essential boundary conditions (7), (9b) and (10)-(1 l), as well as inner condition 
B1, are imposed by replacing the equations for the particular degrees of freedom by 
equations enforcing these conditions. The natural boundary conditions (9, (8) and 
(9a) are imposed through the boundary integral in (14), which takes the form 

1 1 .ca jrn(R;' + R;l) $ ds+- ( n - n W i Q  -cos QQ) z, #(Q) = 0, 
C a  

where n is the unit normal to T and n, and zw are the unit normal and tangential 
vectors to the solid surface. 

The last term in (17) is due to shell forces at the contact line (see Christodoulou & 
Scriven 1989). From a numerical point of view it is a penalty function which keeps the 
inclination at point Q equal to the prescribed value QQ. As noted, the point Q is the 
contact-line point L in cases B1 and B2 and the point A in case B3. Thus making the 
size of the finite elements in the vicinity of point Q go to zero the contribution of both 
integrals in (17) at point Q will also go to zero, i.e. n-n,,Q+cos(OQ). This is the case 
since the elements of the stress tensor 17 are bounded at Q and the diameter of the 
support of the basic function qY decreases with decreasing element size. The finite- 
element size in the vicinity of point Q is therefore chosen small enough for the 
condition (13) to be satisfied with some required accuracy. For the results presented in 
the present paper the deviation of the inclination obtained from that required by (13) 
is less than 0.01". Thus (13) is satisfied in a natural way and the velocity and pressure 
fields obtained satisfy the whole mathematical formulation (2)-( 13) except for (6). 

To obtain the steady meniscus position T: x, = h(x,) the unsteady problem is solved, 
beginning from an initial configuration To and using the standard kinematic condition 
for r ( t ) : x z ( t )  = h(x,, t )  

where n(t)  is the normal to T defined by n(t)  = (- ah(x,, t ) / ax ,  ; 1). 
Applying an explicit scheme to the left-hand side of (18) and knowing the meniscus 

position at time t :  x2(t )  = h(x,, t )  and the velocity field u(t) = (ul(t), u2(t))  the meniscus 
position at instant At later can be computed with error O(Atz)  from 

h(x,, t + At) = h(x,, t )  + Atn(x,, h(x,, t ) ,  t).u(x,, h(x,, t),  t).  (19) 

The steady position T, then, is the limit of T ( t )  as t + 00, i.e. h(x,) = limt+m h(x,, t). In 
practice the calculation is stopped when n(x,, t ) .u (x , ,  t )  becomes small enough and the 
meniscus hardly moves anymore. The steady meniscus shapes presented here satisfy the 
requirement n - u < 0.01, i.e. the boundary condition (6) is satisfied within an error of 
less than 0.01. 

The advantage of the above described numerical scheme, compared with available 
ones, consists in its applicability to unsteady problems. However, for steady ones it 
requires more computational time than that used by Lowndes (1980). The reason is 
that the maximum value of At is limited by numerical instability and decreases with 
decreasing element size and capillary number, becoming prohibitively small for 
elements of the required (subnanometer) size in the neighbourhood of point Q. To 
circumvent this problem, only the elements immediately adjacent to the interface are 
addressed at each time step, a full calculation being performed intermittently. It should 
be noted that this approach does not introduce any additional errors as the 
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FIGURE 2. The inclination, @(x,), of the meniscus profile obtained using the inner boundary condition 
B1 at three different slip lengths (m): curve 1, lo-’; *, 3 x lo-’; curve 2, Cu = 0.021 1, QQ = 69”. 

displacement of the interface changes only the adjacent elements and their local 
matrices. Optimization of this approach resulted in a reduction of the computational 
time by an order of magnitude, enabling the required resolution to be attained. 

In order to optimize the number of finite elements used and to present the solution 
adequately logarithmically decreasing mesh sizes were used near the contact line (point 
Q) (see those used by Lowndes). The dimensionless spatial step in the vicinity of Q is 
chosen of order lo-’. This step guarantees a good approximation of the conditions (9, 
(l l) ,  (13) as well as the inner boundary condition B3 in the range of parameters 
considered. 

4. Results 
Figure 2 presents the results of computations using the boundary condition B1 with 

three different values of the dimensionless inner length, 1,. The values of Ca and cDQ 
correspond to the Ca- and @,-values in one of the cases investigated experimentally by 
Hoffman (1975), using a capillary tube of radius 0.978 mm. The numerical results 
indicate that the outer solution is fairly sensitive to the value of the inner length scale, 
a conclusion also reached by Lowndes, who employed the boundary condition B2 in 
his finite-element solution, and by Boender et al. using an analytical approximation 
employing the boundary condition B3. Both Lowndes and Boender et al. obtained 
optimal agreement with the Hoffman’s experimental results (@,-values) using an inner 
length scale of around lO-’m and this value is adopted for all three boundary 
conditions in what follows. 

Figure 3(a) displays the computed variation of the meniscus inclination @ with 
dimensionless distance from the wall, 1 - x,, using the boundary conditions BlLB3, for 
the same values of cDQ and Ca as in figure 2. Curves 1 and 3 correspond to the boundary 
conditions B1 and B3 respectively, while the circles represent the results obtained by 
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FIGURE 4. Comparison between different inner models for QQ = 21", 1, (dimensionless) = and 
Ca = 0.00428. 

Lowndes, using condition B2. A small error - probably 0.5" or less - is introduced in 
converting Lowndes' results, which were presented as plots of the meniscus slope 
(cot @), into @-values. The corresponding results for a higher Ca-value are given in 
figure 3 (b), while figure 4 presents those for one of the cases examined experimentally 
by Hansen & Toong (197 1) using a capillary of 1.19 mm radius. The differences between 
the three solutions are marked. 

The values of @ obtained at distance lo-' m from the wall (1 -xl z lop6) using 
boundary condition B1 were now taken as QQ-values for a new computation using 
boundary condition B3. The resulting points (*) in figures 3 and 4 are seen to lie almost 
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FIGURE 5. Comparison between solutions obtained at Ca = 0.021 1 using the inner boundary 
condition B1 for I ,  = and cDQ = 69" (the line) and that using B3 with 1, = 101, and cDQ taken from 
the B1-solution (points). 

perfectly on curve 1, indicating that for a A-value equal to the inner length scale the 
outer solution is already virtually independent of the inner boundary condition used. 
As would be expected, this behaviour is maintained for larger A-values: figure 5. 

In contrast, the same procedure for boundary condition B2 yielded curve 2, which 
corresponds less satisfactorily with the circles. As conditions B1 and B2 are alike (both 
being slip conditions), it seems likely that this lack of correspondence is primarily due 
to numerical inaccuracies in one or both of the finite-element schemes (the present 
method and that of Lowndes). Such inaccuracies would not show up in the comparison 
between curve 1 and the * points, as they would contribute in the same way to both. 

5 .  Discussion 
Returning to the issues set out in the Introduction, a number of conclusions can now 

be drawn. The first is that the results corroborate the proposal of Kafka & Dussan V. 
(1979) that for given meniscus inclination at distance h from the wall, the meniscus 
shape at greater distances is independent of the inner model and boundary conditions, 
provided h satisfies (1). 

More importantly, for the slip and continuum-breakdown models numerically 
investigated here, the smallest value of h exhibiting this independence is of the order 
of the inner length scale, I, itself, so that the meniscus shape follows from the value of 
@(o, regardless of the inner model. Estimates of I (for either type of model) being of 
the order of a molecular dimension for the systems investigated to date, the tentative 
conclusion is then that @ ( I )  can be equated with the true contact angle Q0, which 
constitutes a sufficient boundary condition for the outer, classical region. 

This conclusion is of course at present limited to the case examined here of a viscous 
liquid steadily displacing a gas from a smooth homogeneous solid and even then there 
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may be an exception for systems exhibiting a very small (but non-zero) static contact 
angle, when the inner length scale should be greater than a molecular dimension as a 
result of the dominant influence of van der Waals interactions (de Gennes et al. 1990). 
Nevertheless, as there are no obvious physical grounds for expecting the inner length 
scales to be of a different order in receding, gas-liquid or liquid-liquid systems, the 
present simplifications probably apply there too. Unlike the advancing case, the 
predicted wetting behaviour is then highly sensitive to the value of @,, and present 
indications are that its value often depends significantly on the wetting speed (Chesters 
& van der Zanden 1993; Zhou & Sheng 1990; van der Zanden & Chesters 1994b). 

This work was carried out while I. B. Bazhlekov was a fellow at Eindhoven 
University of Technology under the European-Community scheme S&T Cooperation 
with Eastern and Central European Countries and was further sponsored by grant no. 
50 1 /95 of the Bulgarian Ministry of Education, Science and Technology. 
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